在工业和服务域中,使用机器人的主要好处是它们快速可靠地执行重复性任务的能力。但是,即使是相对简单的孔洞任务,通常也会受到随机变化的影响,需要搜索运动才能找到相关的功能,例如孔。尽管搜索提高了鲁棒性,但它以增加运行时的成本为代价:更详尽的搜索将最大化成功执行给定任务的可能性,但会大大延迟任何下游任务。根据简单的启发式方法,这种权衡通常由人类专家解决,这些启发式很少是最佳的。本文介绍了一种自动,数据驱动和无启发式方法,以优化机器人搜索策略。通过训练搜索策略的神经模型在一系列模拟随机环境上,在几个现实世界中的示例中进行调节并颠倒模型,我们可以推断出适应了基本概率分布的时间变化特征,同时需要很少的现实测量。在螺旋和探测器搜索电子组件的背景下,我们评估了对两个不同工业机器人的方法。
translated by 谷歌翻译
手术场景的语义分割是机器人辅助干预措施中任务自动化的先决条件。我们提出了LapseG3D,这是一种基于DNN的新方法,用于代表手术场景的点云的素云注释。由于训练数据的手动注释非常耗时,因此我们引入了一条半自治的基于聚类的管道,用于胆囊的注释,该管道用于为DNN生成分段标签。当对手动注释数据进行评估时,LapseG3D在前体猪肝的各种数据集上的胆囊分割达到了0.94的F1得分。我们显示LapseG3D可以准确地跨越具有不同RGB-D摄像机系统记录的不同胆囊和数据集。
translated by 谷歌翻译
可以通过组合单个机器人技能来有效地解决具有挑战性的操纵任务,该技巧必须用于具体的物理环境和手头的任务。对于人类程序员来说,这是耗时的,尤其是针对力控制的技能。为此,我们提出了阴影程序反演(SPI),这是一种直接从数据推断最佳技能参数的新方法。 SPI利用无监督的学习来训练辅助区分程序表示(“影子程序”),并通过基于梯度的模型反转实现参数推断。我们的方法使使用高效的一阶优化器可以推断出最初非差异技能的最佳参数,包括当前生产中使用的许多技能变体。 SPI零射击跨任务目标概括,这意味着不需要对阴影程序进行重新训练来推断不同任务变体的参数。我们在工业和家庭场景中评估了三个不同的机器人和技能框架的方法。代码和示例可在https://innolab.artiminds.com/icra2021上找到。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We address the problem of extracting key steps from unlabeled procedural videos, motivated by the potential of Augmented Reality (AR) headsets to revolutionize job training and performance. We decompose the problem into two steps: representation learning and key steps extraction. We employ self-supervised representation learning via a training strategy that adapts off-the-shelf video features using a temporal module. Training implements self-supervised learning losses involving multiple cues such as appearance, motion and pose trajectories extracted from videos to learn generalizable representations. Our method extracts key steps via a tunable algorithm that clusters the representations extracted from procedural videos. We quantitatively evaluate our approach with key step localization and also demonstrate the effectiveness of the extracted representations on related downstream tasks like phase classification. Qualitative results demonstrate that the extracted key steps are meaningful to succinctly represent the procedural tasks.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
In training neural networks, batch normalization has many benefits, not all of them entirely understood. But it also has some drawbacks. Foremost is arguably memory consumption, as computing the batch statistics requires all instances within the batch to be processed simultaneously, whereas without batch normalization it would be possible to process them one by one while accumulating the weight gradients. Another drawback is that that distribution parameters (mean and standard deviation) are unlike all other model parameters in that they are not trained using gradient descent but require special treatment, complicating implementation. In this paper, I show a simple and straightforward way to address these issues. The idea, in short, is to add terms to the loss that, for each activation, cause the minimization of the negative log likelihood of a Gaussian distribution that is used to normalize the activation. Among other benefits, this will hopefully contribute to the democratization of AI research by means of lowering the hardware requirements for training larger models.
translated by 谷歌翻译
In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance.
translated by 谷歌翻译
Prevailing methods for assessing and comparing generative AIs incentivize responses that serve a hypothetical representative individual. Evaluating models in these terms presumes homogeneous preferences across the population and engenders selection of agglomerative AIs, which fail to represent the diverse range of interests across individuals. We propose an alternative evaluation method that instead prioritizes inclusive AIs, which provably retain the requisite knowledge not only for subsequent response customization to particular segments of the population but also for utility-maximizing decisions.
translated by 谷歌翻译
We designed and constructed an A-sized base autonomous underwater vehicle (AUV), augmented with a stack of modular and extendable hardware and software, including autonomy, navigation, control and high fidelity simulation capabilities (A-size stands for the standard sonobuoy form factor, with a maximum diameter of 124 mm). Subsequently, we extended this base vehicle with a novel tuna-inspired morphing fin payload module (referred to as the Morpheus AUV), to achieve good directional stability and exceptional maneuverability; properties that are highly desirable for rigid hull AUVs, but are presently difficult to achieve because they impose contradictory requirements. The morphing fin payload allows the base AUV to dynamically change its stability-maneuverability qualities by using morphing fins, which can be deployed, deflected and retracted, as needed. The base vehicle and Morpheus AUV were both extensively field tested in-water in the Charles river, Massachusetts, USA; by conducting hundreds of hours of operations over a period of two years. The maneuvering capability of the Morpheus AUV was evaluated with and without the use of morphing fins to quantify the performance improvement. The Morpheus AUV was able to showcase an exceptional turning rate of around 25-35 deg/s. A maximum turn rate improvement of around 35% - 50% was gained through the use of morphing fins.
translated by 谷歌翻译